Suspended microchannel resonators with piezoresistive sensors.
نویسندگان
چکیده
Precision frequency detection has enabled the suspended microchannel resonator (SMR) to weigh single living cells, single nanoparticles, and adsorbed protein layers in fluid. To date, the SMR resonance frequency has been determined optically, which requires the use of an external laser and photodiode and cannot be easily arrayed for multiplexed measurements. Here we demonstrate the first electronic detection of SMR resonance frequency by fabricating piezoresistive sensors using ion implantation into single crystal silicon resonators. To validate the piezoresistive SMR, buoyant mass histograms of budding yeast cells and a mixture of 1.6, 2.0, 2.5, and 3.0 µm diameter polystyrene beads are measured. For SMRs designed to weigh micron-sized particles and cells, the mass resolution achieved with piezoresistive detection (∼3.4 fg in a 1 kHz bandwidth) is comparable to what can be achieved by the conventional optical-lever detector. Eliminating the need for expensive and delicate optical components will enable new uses for the SMR in both multiplexed and field deployable applications.
منابع مشابه
Suspended microchannel resonators for biomolecular detection
We have demonstrated a new approach for detecting biomolecular mass in the aqueous environment. Known as the suspended microchannel resonator (SMR), target molecules flow through a suspended microchannel and are captured by receptor molecules attached to the interior channel walls [1]. As with other resonant mass sensors, the SMR detects the amount of captured target molecules via the change in...
متن کاملElectronic Readout of Microchannel Resonators for Precision Mass Sensing in Solution
Microfabricated transducers have enabled new approaches for detection of biomolecules and cells. Integration of electronics with these tools simplify systems and provide platforms for robust use outside of the laboratory setting. Suspended microchannel resonators (SMRs) are sensitive microfluidic platforms used to precisely measure the buoyant mass of single cells and monolayers of protein in f...
متن کاملHighly Sensitive Measurement of Liquid Density in Air Using Suspended Microcapillary Resonators
We report the use of commercially available glass microcapillaries as micromechanical resonators for real-time monitoring of the mass density of a liquid that flows through the capillary. The vibration of a suspended region of the microcapillary is optically detected by measuring the forward scattering of a laser beam. The resonance frequency of the liquid filled microcapillary is measured for ...
متن کاملPull-In Effect of Suspended Microchannel Resonator Sensor Subjected to Electrostatic Actuation
In this article, the pull-in instability and dynamic characteristics of electrostatically actuated suspended microchannel resonators are studied. A theoretical model is presented to describe the pull-in effect of suspended microchannel resonators by considering the electrostatic field and the internal fluid. The results indicate that the system is subjected to both the pull-in instability and t...
متن کاملUltimate and practical limits of fluid-based mass detection with suspended microchannel resonators
Suspended microchannel resonators SMRs are an innovative approach to fluid-based microelectromechanical mass sensing that circumvents complete immersion of the sensor. By embedding the fluidics within the device itself, vacuum-based operation of the resonator becomes possible. This enables frequency shift-based mass detection with high quality factors, and hence sensitivity comparable to vacuum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Lab on a chip
دوره 11 4 شماره
صفحات -
تاریخ انتشار 2011